Reprinted from Agronomy Journal
Vol. 89, No. 4

An Empirical Model of Diurnal Temperature Patterns

E. John Sadler* and Ronald E. Schroll

ABSTRACT

Air temperature is a key driving factor in many crop growth models.
Hourly air temperature data required for input are often not available
and must be estimated from daily extremes. Several methods to model
diurnal patterns exist; all are arbitrary functions of time during the
day, chosen to match the daily pattern. Of all possible mathematical
shapes, it would be preferable to use the one generated by the data
themselves. Thus, our objective was to develop an empirical model
to reconstruct the diurnal air temperature curve from measured daily
extremes. As usual, temperature was normalized to range from 0 to
1 at the daily extremes. However, we also normalized time, to reduce
seasonal variation in the shape of the temperature pattern. Calibration
consisted of developing the cumulative distribution function of nor-
malized temperature for a year’s data, fitting a beta distribution to
the data, and evaluating the 50th percentile, all as a function of time.
The resulting vectors of normalized time and air temperature were
used to generate diurnal patterns from daily extremes. The model
was calibrated with one year’s data for each of 14 sites across the
USA, and tested for additional years at each site. For the total 32
site-years, annual mean r? ranged from 0.47 to 0.87, with values highest
for Arizona sites, intermediate for South Carolina, and lowest for
mountainous Idaho sites. Model performance was better than or equal
to that of the next-best model in 16 of 32 site-years, and also overall.
Normalization of both time and temperature produced diurnal air
temperature patterns that were sufficiently general to apply with mini-
mal loss of predictive accuracy at widely separate sites in the USA.

MBIENT AIR TEMPERATURE is a fundamental require-
ment of many models of physical and biological
systems, such as those describing crop phenology and
development based on the seasonal accumulation of

growing degree days. Usually, temperature data are in-

put depending on the model’s time step. Those with a
daily time step generally utilize daily extremes or the
~mean daily temperature (e.g., Jones and Kiniry, 1986);
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models with a shorter time step require input of temper-
ature data at subdaily intervals. Unfortunately, subdaily
temperature data are not often recorded at many loca-
tions or may not be easily accessible because of the file
size, making the only temperature data available the
daily minima and maxima. When subdaily data are not
available, the shorter time step models must employ a
submodel to approximate diurnal temperatures from
daily extremes.

The shape of the diurnal temperature curve has been
modeled with a variety of methods with varying degrees
of complexity. These methods include linear models
(Sanders, 1975), simple curve-fitting models based typi-
cally on sine or Fourier analysis (Walter, 1967; Johnson
and Fitzpatrick, 1977; De Wit et al., 1978; Parton and
Logan, 1981; Kline et al., 1982; Acock et al., 1983; Wilk-
erson et al., 1983; Floyd and Braddock, 1984; Worner,
1988; Fernandez, 1992), and more complex energy bud-
get models (Myrup, 1969; Lemon et al., 1971; Goudriaan
and Waggoner, 1972).

The linear and simple curve models have an advan-
tage in that they are easy to use and often require only
daily minimum and maximum temperatures. Reicosky
et al. (1989) examined the accuracy of five such existing
methods, three of which are currently used in existing
soybean growth models, for calculating hourly air tem-
perature from daily extremes. All methods worked well
on clear days, but had limited success on overcast days.
They concluded that, when accuracy of temperature
input to crop simulation models is critical, direct mea-
surement of hourly temperature may be necessary.

Abbreviations and variables: ABSRES, sum of the absolute value of
the residuals; CDF, cumulative distribution function; D, daylength;
H,, time of observation; H,, normalized time of observation; H,, time
of sunrise; H,, time of sunset; i and j (in subscripts with temperature
variables), day i and time j; MSE, mean square error; RES, sum of
residuals; RMSE, root mean square error; T,, measured air tempera-
ture; T, calculated air temperature; T,,, and T,,,, minimum and maxi-
mum air temperature; T,, normalized air temperature; I', gamma distri-
bution function; «, shape parameter for the I'-function; B, shape
parameter for the I'-function.
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All such models of diurnal patterns consist of some

type of curve designed to approximate a typical, clear-

day temperature pattern. As such, the accuracy of the
model in matching a diurnal pattern depends both on
the uniformity of the daily temperature pattern and on
the degree to which the theoretical pattern matches the
real, typical pattern. Our objective was to develop an
empirical model to describe the shape of the diurnal air
temperature curve that is not restricted by the assump-
tion that the shape of the daily pattern fits a predefined
curve, such as a sine wave. The model, designated herein
as TFIT, can be used in either of two modes, determinis-
tically or stochastically. This work reports development
and evaluation of the reconstruction of diurnal air tem-
perature patterns from daily temperature extremes for
the deterministic mode.

MATERIALS AND METHODS
Data Collection

The hourly air temperature data used to calibrate and test
the model were obtained from 14 sites (Table 1). A total of
46 data sets were used. Temperature data from the first year
at each site were used to parameterize the model. For parame-
terization only, days with precipitation (>>0.5 mm) were omit-
ted from the data set to avoid skewing the temperature distri-
butions. This was done because rain exerts a predictable
influence on diurnal patterns and thus can be modeled using
a routine contingent on occurrence of rain, such as the wet-
day vs. dry-day output of WGEN (Richardson and Wright,
1984). All other days were included irrespective of whether
they contained atypical weather events, such as frontal pas-
sage. The remaining years’ data at each site were used for
testing. During tests, days with precipitation were included.

Model Development

The shape of the diurnal temperature cycle is closely related
to the receipt of global irradiance (Campbell, 1977). Fluctua-
tions in the shape of daily air temperature curve can be attrib-
uted to daily and annual periodicities, as well as aperiodic
(irregular) fluctuations resulting from, for instance, frontal
passage. Annual variation arising from phase angle changes,
as a result of the progression of the earth’s position relative
to the sun throughout the year, tends to shift the time of
minimum and, for some sites, maximum temperature to an
extent dependent on daylength (Walter, 1967). Similarly, atyp-
ical weather events displace the times of the daily temperature
extremes, as well as affecting the magnitude of the daily tem-

perature range. We developed a continuous function that ac-
counts for annual and diurnal variation by normalizing both
the temperature and time scales.

Hourly air temperature data are implicitly or explicitly nor-
malized in all models. In our work, they were explicitly normal-
ized:

Ta(ij) - Tmin(i)
Tmin(i)

(1]

T o =
" Tmax(i) -
where T, is normalized air temperature on day i at time j,
T, is measured air temperature on day i at time j, Toing is
minimum air temperature on day i, and Ty, is maximum air
temperature on day i. This procedure scales the amplitude of
the daily curve to account for variation in the daily tempera-
ture range. Performing this step, alone, allows a distribution
of hourly air temperatures to be developed, but aggregating
more than a month’s data this way will include variation caused
by seasonal changes in daylength. Thus, some method to ac-
count for such seasonality is required.

The first unique feature of this work is the normalization
of time. To minimize annual variation, the time scale of the
hourly air temperature observations (H,) was normalized, with
0000 h, sunrise (H,), sunset (H,), and 2400 h defined as 0.00,
0.25, 0.75, and 1.00, respectively:

H, = 025 00 < H, < H,
H;

H=0500 " 005 H,=H <H,

H, = 025 = Hs | 75 H < H, <24 2]
24 — M,

where H, is normalized time and D is daylength in hours. This
process fixes the time of sunrise and sunset, thus stabilizing
the effect that D or position within a time zone may have on
the shape of the diurnal pattern. Stabilizing the shape of the
curve, normalized in both dimensions, creates a family of daily
curves that can now be described stochastically, which is the
second unique feature of this work.

At any given time during the day, the normalized tempera-
ture is bounded by 0 and 1. Near dawn, the distribution of
values will be skewed toward 0; in early afternoon, they will
be skewed near 1. Distributions bounded between 0 and 1
and that exhibit positive, negative, or no skew can be described
by the beta distribution.

The normalized air temperatures were sorted into 20 classes
(width- = 0.05) of normalized time. A two-parameter beta
distribution was fit to the cumulative distribution function

Table 1. Sites of historical, hourly weather data used to calibrate and test the TFIT model.

Location Lat N Long W Elevation Year
) m

Aguila, AZ 33°57 13°11’ 655 1987-1988
Coolidge, AZ 32°59’ 111°36’ 422 1987-1988
Parker, AZ 33°53’ 114°27' 94 19871988
Safford, AZ 32°49' 109°41' 901 1987-1988
Tucson, AZ 32217 110°57' 713 1987-1988
Yuma Valley, AZ 32°4% 114°42’ 35 1987-1988
Boise, ID (Quonset) 43°12’ 116°45’ 1194 1992-1993
Reynolds Mtn., ID 43°04' 116°45' . 2098 1992-1993
West Lafayette, IN 40°21’ 86°52’ 183 1978-1979
Morris, MN 45°35’ 95°53’ 348 1986-1988
Lincoln, NE 40°51’ 96°45’ 366 1991-1995
Pendleton, OR 45°43’ 118°38’ 454 1982-1988
Kutztown, PA (Rodale) 40°25’ 75°56’ 120 1985-1987
Florence, SC 34°08’ 79°26’ 41 1985-1995
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(CDF) of temperatures within each of these classes. The beta
density function is given by:

o) = 5 gy e (= P
a>0,>0,0=x=1 [3]

where I' is the gamma distribution, o and B are shape parame-
ters, and x is the beta variable. The mean and variance of
each class were used as moment estimators of o and B (Haan,
1977). The CDF of the beta distribution was obtained by
numerically integrating Eq. [3]. To test the hypothesis that
the beta CDF accurately fits the temperature CDF, Kolmo-
gorov—Smirnov (K-S) goodness-of-fit tests were run for each
class of a Florence, SC, test data set from 1985 to 1987. The
hypothesis was rejected (P = 0.05) in six of the twenty classes
(0.15, 0.20, 0.25, 0.55, 0.60, and 1.0) as a result of the high
percentage of either 0 (the minimum) or 1 (the maximum)
values occurring in the measured data, while the theoretical
percentages at these points in the beta distribution are defined
as zero. Because the beta CDF fit the remaining data points
well, and the predictive error involved during those times was
small, we decided to retain the beta distribution.

Work at our laboratory in Florence, SC, has used these
stochastic descriptors in both a stochastic and deterministic
mode. The remainder of this report will describe only the
deterministic mode, which is the first step in implementing
the procedure for use in deterministic models. Such models
require air temperature as a function of time. The 50th percen-
tile of the CDF for each of the 20 classes of normalized time
resulted in a set of 20 x,y pairs. A procedure to convert normal-
ized air temperature and time to conventional units is de-
scribed below.

Deterministic Mode

Conversion of normalized air temperature is straightfor-
ward using Eq. [1] solved for T,. However, to avoid discontinu-
ities caused by switching from one set of daily extremes to
another at midnight, the different parts of the day are calcu-
lated from different sets of minimum and maximum tempera-
tures. Our model, TFIT, divides the day into three segments:
midnight to sunrise, sunrise to sunset, and sunset to midnight.
The calculated air temperatures during each segment are cal-
culated as follow:

Tc(ij) - Tmax(i*l) - (10 - Tn(j)) (Tmax(i—l) - Tmin(i))

00 < H, < H,
Ty = Toif(Twaxey — Toiny) + Trnini)
' Hr = Hn < Hs .
Tc(ij) = Tmax(i) - (1-0 - Tn(j)) (Tmax(i) - Tmin(i+1))
: H =H,<?24 [4]

where T is calculated air temperature on day i at time j,
and T, is the normalized air temperature at time j calculated
from the 50th-percentile values. Similarly, normalized time is

converted to standard time based on solutions of Eq. [2] for
the appropriate time periods.

Model Validation

There are three aspects of model accuracy: how well the
calculated values of air temperature match measured values,
how well the model performs compared with alternative meth-
ods, and how widely-applicable any one set of the model’s
parameters might be. First is the question of how accurately
the calculated temperatures matched the measurements. Eval-
uating models that produce time series has been the subject
of much discussion. For simplicity and for familiarity, the
regression coefficient, r%, was used for the comparison of simu-
lated and measured hourly values. However, r? must be inter-
preted carefully, because diurnal and annual variations in the
time series will artifactually increase its value. To avoid the
annual variation inflating r?, daily r? values were computed,
and monthly and annual mean r? values were then calculated.

Aspect number two was addressed by comparing TFIT with
five existing models: SAWTOOTH (Sanders, 1975), TEMP
(Parton and Logan, 1981), WAVE (De Wit et al., 1978),
WCALC (Wilkerson et al., 1983), and WEATHER (Acock
et al., 1983). The general assumptions of each model are sum-
marized in Table 2, while a detailed review of the methods used
in these five temperature models can be found in Reicosky et
al. (1989), who previously evaluated their accuracy. The times
of the extremes are either set to specific hours or are calculated
as empirical functions of sunrise and sunset. All models require
daily minimum and maximum air temperature as input, and
some require location latitude and longitude to calculate sun-
rise and sunset times.

Several statistics were calculated for each day in the data
set to evaluate the. relative accuracy of TFIT and the other
models. Each statistic was subjected to analysis of variance,
and means were separated with the Waller-Duncan k-ratio
t-test (P ='0.05) (SAS, 1990). The first of these statistics was
the correlation coefficient (r) between calculated temperature

" (T.) and measured temperature (7,) for each hour of a day.

The inverse hyperbolic tangent transform of » was calculated
to ensure that it was approximately normally distributed,
which is a requirement of the analysis of variance (Steel and
Torrie, 1980). Although means separation was performed on
transformed r, tables presented here will be presented as r?
to ease interpretation.

The mean square error (MSE) was calculated to reflect the
accuracy of the shape of the calculated curve to the measured
curve: )

MSE = % (To) — Tup)?

j=1 n

g

where T, is measured air temperature at time j, Ty is.calcu-
lated air temperature at time j, and n is the number of observa-
tions. To satisfy the assumption of normality for the analysis
of variance, the MSE rather than the root MSE (RMSE) was
used because it is likely to have the chi-square distribution,
which approaches a normal distributions for large degrees of

Table 2. Descriptions and assumptions of the six diurnal temperature models, including TFIT.

k Time of Time of Day Night

Model Identifier minimum maximum function function
SAWTOOTH (Sanders, 1975) . SAWT 0500 h 1500 h linear linear
TEMP (Parton and Logan, 1981) TEMP empirical empirical sine exponential
WAVE (De Wit et al., 1978) WAVE Hi 1400 h cosine cosine
WCALC (Wilkerson et al., 1983) CALC H +2h f(day)t sine linear
WEATHER (Acock et al., 1983) WEAT H, - f(sobt - sine exponential
TFIT TFIT empirical empirical empirical empirical

+ H,, sunrise; f(day), cosine function of daylength; f(sol), function of solar radiation.
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freedom (Steel and Torrie, 1980). The MSE was logarithmi-
cally (base 10) transformed prior to analysis, which is a com-
mon procedure when performing the analysis of variance on
variances. Again, interpretation of log-transformed: MSE is
not intuitive, so tables presented here will be RMSE, but the
mean separations indicated were performed on log MSE.

The sum of the residuals (RES) and the sum of the absolute
value of the residuals (ABSRES) were used to evaluate how
consistent the models were in calculating air temperature
throughout a daily cycle:

24 .
RES = 21 (T = Te) [6]
7= .
24 ’
ABSRES = E ‘Ta(j) - TC(]')I [7]

j=1
A value of RES close to zero indicates an unbiased model,
and smaller values of ABSRES indicate better performance.
To this point, all model runs were conducted using the
initial year’s (or season’s) data at each site as calibration, and
subsequent year’s data for testing. The third aspect, generality,
was addressed by comparing normal curves for all sites and
by testing one site’s parameters against another site’s data.

RESULTS AND DISCUSSION

Performance of TFIT Against Measured
Air Temperatures

The statistical summary of all tests against subsequent
years’ data is shown in Table 3. For the 32 site-years,
r? ranged from 0.47 to 0.87. Results for the Arizona
sites were the highest, with all 72 > 0.80. Results for the
10 yr of South Carolina data were intermediate, ranging
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from 0.75 to 0.82. Results from the mountainous Idaho
sites were the poorest, ranging from 0.47 to 0.59. In
contrast to 2, the RMSE values were generally lower
for South Carolina than for Arizona, reflecting different
distributions of deviations from measured air tempera-
ture. Summed deviations from measured air tempera-
ture were small, with one case representing more than
1°C average underestimate each hour. The average ab-
solute -errors were also small, with only two nonmoun-
tainous site-years exceeding a sum of 48, representing
a 2°C average.

Comparisbn of TFIT with Other Models

The comparison of our model, TFIT, with the five
other models is summarized in Table 4. Analysis of
variance ‘was performed on correlation coefficient, 7,
and mean square error, MSE, after transformation to
approach normal distributions. However, both trans-
formed variables are difficult to interpret, so the table
lists > and RMSE, followed by lowercase letters indicat-
ing where the transformed means are not significantly
different according to the Waller-Duncan test at the
0.05 level. In addition, because the six methods are
rarely sorted in the same order, the means have been
arranged alphabetically by method, with the numerical
best case highlighted for convenience.

Values for RMSE for all models ranged from 1.60 to
6.44°C, with those for the TFIT model ranging from
1.60 to 4.30°C. Of the 10 highest values for RMSE, 6
were the 6 yr for Pendleton, OR. The two highest values

Table 3. Summary statistics for 32 site-years of TFIT calculated air temperatures compared with measured hourly temperatures. Values

are annual means of daily statistics.t

Calibration
Location Test year year n r? RMSE RES ABSRES
Morris, MN 1988 1986 181 0.813 2.124 —12.782 40.203
Aguila, AZ 1988 1987 360 0.830 2.379 -0.197 42.388
Coolidge, AZ 1988 1987 363 0.841 2.394 0.751 44.279
Parker, AZ 1988 1987 363 0.838 2.229 2.601 41.214
Safford, AZ 1988 1987 363 0.866 2.305 0.405 43.251
Tucson, AZ 1988 1987 356 0.853 2.244 1.350 40.591
Yuma Valley, AZ 1988 1987 360 0.824 2.336 -2.311 43.854
Boise, ID (Quonset) 1993 1992 348 0.594 4.303 —33.499 81.106
Reynolds M., ID 1993 1992 363 0.472 3.650 ~18.431 71.002
Lincoln, NE 1992 1991 363 0.684 2.103 —4.485 39.644
Lincoln, NE 1993 1991 363 0.653 2.023 -4.010 38.293
Lincoln, NE 1994 1991 363 0.693 2,123 —6.634 40.391
Lincoln, NE 1995 1991 363 0.659 2.158 -2.199 40,979
Pendleton, OR 1983 1982 321 0.675 2.383 —5.399 44.668
Pendleton, OR 1984 1982 339 0.678 2.361 —3.630 43.662
Pendleton, OR 1985 1982 352 0.690 2.527 -6.236 46.341
Pendleton, OR 1986 1982 354 0.674 2.376 -1.899 44.213
Pendleton, OR 1987 1982 355 0.689 2.695 —4.967 49.477
Pendleton, OR 1988 1982 349 0.695 2.661 —4.714 49,060
Kutztown, PA 1986 1985 357 0.739 1.804 —6.786 33.641
Kutztown, PA 1988 1985 358 0.756 1.765 —4.779 33.194
W. Lafayette, IN 1979 1978 9% 0.797 1.600 -2.593 29.634
Florence, SC 1986 1985 363 0.768 1.879 —4.831 34.635
Florence, SC 1987 1985 363 0.772 1.790 -4.746 33.360
Florence, SC 1988 1985 353 0.766 1.928 —6.816 35.584
Florence, SC 1989 1985 348 0.761 1.766 —3.789 32.663
Florence, SC 1990 1985 351 0.822 1.858 —2.464 34.115
Florence, SC 1991 1985 347 0.782 1.864 —6.452 34.505
Florence, SC 1992 1985 306 0.791 2.001 -3.870 36.938
Florence, SC 1993 1985 334 0.797 2.068 —5.130 38.229
Florence, SC 1994 1985 349 0.755 2.170 —3.163 40.244
Florence, SC 1995 1985 349 0.772 2.146 -0.138 39.138

+ RMSE, root mean square error; RES, sum of residuals; ABSRES, sum of the absolute value of the residuals.
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Table 4. Values of RMSE and r? with means separation on transformed parameters of six models for 32 site-years.t

RMSE r?
Location n CALC: SAWT TEMP TFIT .WAVE WEAT CALC SAWT TEMP TFIT
Morris, MN 181 3.04a§ 214b 3252 ZE3bA 224b  068b -0.79a  0.63  BSfa
Aguila, AZ 360 2.84a 2.22¢ 2.64a 2.38b 2.52b 0.79¢ - 0.86b 0.79d
Coolidge, AZ 363 2.89a 2.23¢ 3.00a 2.39b 2.38ch  0.80d 0.87b 0.76¢
Parker, AZ 363 2.58b 2.11dc 2.84a 2.23¢ 0.80d 0.86¢ 0.76¢
Safford, AZ 363 2.85a 2.35b 2.67a 0.81d 0.85b 0.81d
Tacson, AZ 356 2.72a 2.16¢ 2.67a 2.24¢ 0.80d 0.86b 0.78d
Yuma Valley, AZ 360 2.76a 1.96d 2.34b 0.78¢ 0.88b 0.74f .
AZ mean 2165 2.77a 2.17¢ 2.31b 0.80¢ 0.86b 0.77¢ .
Boise, ID (Quonset) 348 4.58bc 3.7 430b  413¢ 6442 0.59¢  0.6labc BiBa 0.61ab  0.29d
Reynolds Min., ID 363 3.43cd 3.21d 3.65b 3.54¢ 4.66a 852a 0.51a 0.51a 0.50a 0.32¢
Lincoln, NE 363 2.29b 2.10c 1.99¢d 2.01¢ 0.64c 0.58d 0.70ab 0.69ab
Lincoln, NE 363 2.14b 2.02bc  195¢ 2.04bc  0.64¢ 0.54d 0.68ab  0.64b
Lincoln, NE 363 237b 2.12¢ 2.00d 2.06d 0.64¢ 0.55d 0.70ab 0.71a
Lincoln, NE 363 2.27b 2.16b 1.98¢ 1.87cd 0.63d 0.53¢ 0.69b 0.71a
NE mean 1452 227 2.10c 1.98d 2.00a 0.64d 0.55¢ 0.69b 0.68b
Pendleton, OR 321 2.56b 2.38b 2.45b 2.85a 0.66¢ 0.66cb  0.59d
Pendleton, OR 339 243b 2.36b 2.33b 2.70a 0.67¢ 0.66bc 0.58d
Pendleton, OR 352 2.64b 2.53b 241cb  2.87a 0.69¢ 0.69ch  0.60d
Pendleton, OR 354 2.43b 2.38ba = 2.2dbc 2.51a 0.68¢c 0.69b 0.62d
Pendleton, OR 355 2.89% 2.70b 2.69cb 3.14a 0.68¢ 0.69cb 0.62d
Pendleton, OR 349 2.73b : 2.66b 252¢cb  2.90a 0.71¢c 0.71cb  0.64d
OR mean 2070 2.61cb 2.26d 7. 2.44c 2.83a 0.68d 3 0.68¢ 0.61e
Kutztown, PA 357 2.04b 1.92¢ 1.94¢ 2.30a 0.69¢ 0.67¢ 0.69cb 0.62d
Kutztown, PA 358 2.04b 1.89¢ 2.01cb 2.48a 0.70¢ 0.70cb 0.69ch 0.58d
PA mean 715 2.04b 1.90dc¢ 1.98¢ 2.39a 0.69d 0.69cd 0.69¢cb 0.60e
W. Lafayette, IN 90 222a 2.29a 1.70ch 1.90b 0.66¢ 0.62¢ 0.77a 0.70b
Florence, SC 363 1.98b 2.23a . 1.86¢ 1.88¢c 0.74b 0.68¢ 0.75a 0.74a
Florence, SC 363 1.94b 2.15a 1.79¢ 1.82¢ 1.96b 0.73¢ 0.68d 0.75ba 0.73b
Florence, SC 353 2.08b 2.31a 1.93¢c 2.06b 0.73¢ 0.67d 0.75ba  0.73b
Florence, SC 348 1.96b 1.92b 1.85¢ 2.01b 2.29a 0.69¢ 0.72b 0.70cb  0.63d
Florence, SC 351 2.14b 2.21b 2.02¢ 2.29h 2.54a 0.76¢ 0.78b 0.73¢ 0.69d
Florence, SC 347 2.03ch 2.09chb  2.00¢ 2.22b 2.50a 0.73b 0.74b 0.71b 0.65¢
Florence, SC 306 2.31c 2.43¢cb  2.16d 2.58b 2.83a 0.73¢ 0.75b 0.69¢ 0.64d
Florence, SC 334 2.79¢ 247¢h  2.19d 2.59b 2.84a 0.74¢ 0.76b 0.70¢ 0.66d
Florence, SC 349 2.42¢ 2.58cb 2.22d 2.73b 2.96a 0.69¢ 0.73b 0.65¢ 0.60d
Florence, SC 349 2.34c 2.59b 2.19d 2.72b 2.90a 0.72b 0.75a 0.68¢ 0.63d
SC mean 3463 2.20ch 2.16¢ 2.13¢ 22D 2.48a 0.73¢ 0.72b 0.71b 0.67d
Grand mean 10 847 2.52b %ﬁe 2.40c 2.25d 2.29d 2.62a 0.70d 0.69¢ 0.73b 0.67d

+ RMSE and r? are reported here, but means separation was conducted on transformed values. See text for a discussion and equations.

I Model identifiers as in Table 2.

§ Within rows, means for either RMSE or r? followed by the same letter are not significantly different by the Waller—Duncan test at « = 0.05.
1l Highlighted values indicate the numerical minimum for RMSE and numerical maximum for r2

came from the two Idaho sites. Judging from values of
RMSE, TFIT was the numerically superior method in
12 site-years, of which 7 were at Florence, SC. In 7 of the
12 site-years, the numerical edge was also significantly
better, at the 0.05 level, than the next-best method.
Significance of results for r? was_essentially the same,
with TFIT being numerically superior in 15 site-years,
and 8 of those significant at the 0.05 level. Consistency
of the performance is reflected by significance of the
grand mean of r? for TFIT.

Two important points can be seen in Table 4. First,
although the TFIT model performed numerically better
than the other methods for 15 site-years, it did not at
Pendleton, Lincoln, the 2 Idaho sites, and 5 of the Arizona
sites. As these site-years represent a significant portion
of the total test, the reasons for these results bear further
study. Second, the reason for relatively poorer perfor-
mance at those sites appears to be different. The 6. Ari-
zona sites have the 6 highest r? values, whereas the 2 yr
for Idaho, the 4 yr for Lincoln, and the 6 yr for Pendleton
have the 12 lowest. The r2 values for TFIT in Arizona
are actually higher than those for TFIT at sites where

TFIT was the best performer. Clearly, performance of
TFIT did not diminish in Arizona. Rather, the perfor-
mance of the other methods was considerably improved
there. On the other hand, performances of the TEMP
model, the best performer at Pendleton, and of SAW-
TOOTH, the best performer at Lincoln, were about the
same as they were for the other sites. Clearly, TFIT and
the other models were not able to match daily air temper-
ature patterns as well in these two as in other sites. Al
models performed poorly for the Idaho sites.

Generality of TFIT Parameters

The first indication of generality is how different the
normal curve is for different sites. Figure 1 shows the
mean normalized air temperature pattern for all years
in the eight states represented. The values for different
sites in Arizona were essentially the same. The only
noticeable difference between the two Idaho sites was
that the Reynolds Mountain site contributed the jog in
the nighttime pattern. The curves for seven of the eight
states are not materially different, although one could
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Fig. 1. Comparison of normalized air temperature plotted as a function of normalized time for all sntes Individual values are the means for all
years at each site. Arizona sites and Idaho sites are averaged across sites and years.

argue that the curve for Oregon is shifted somewhat
earlier than the others. The curve for Idaho is qualita-
tively different from the others, with the day’s low often
occurring before midnight.

The generality of TFIT was also evaluated by using
the calibration parameters from the 1985 South Carolina
data set and testing that against all other site-years. The
results are shown in Table 5. The salient finding in this
exercise is that the use of South Carolina’s parameters
does not decrease the annual mean r? very much. In the
cases of the Idaho and Pendleton sites, r* improved
enough to make TFIT superior to the other five meth-
ods. This surprising resuit is partially explained by the
existence of many atypical diurnal patterns in those data
sets. Inspection of individual days showed common oc-
currences of short-term (=2-3 h) spikes and drops on
the order of 5°C. There were also many days for which
the times of the maximum or minimum were not typical.
For such a data set, use of the median at a given time
may not be as suitable as the use of a pattern from a
more uniform site (for example, one of the Arizona
sites). Where the distribution of temperatures at a given
time is broadened (or bimodal), a median temperature
may fall between the typical and anomalous tempera-
tures, thus fitting neither. Then, the apparent paradox
of another site’s parameters fitting better is plausible.

SUMMARY AND CONCLUSIONS

In about half the cases, the TFIT model performed
better or as well as the best of five other methods to
model the diurnal air temperature pattern. At the Ari-
zona sites where other models performed better, TFIT
7? values were still >0.80. Poor performance at Pendle-
ton and the two Idaho sites using on-site calibration
data was improved by substituting South Carolina pa-
rameters, suggesting that a more extensive prescreening
method (here, only days with rain were excluded from
calibration data sets) to eliminate anomalous patterns

would significantly improve the performance of the
model for the more typical days.

The explicit normalization both of air temperature
and of time reduced annual variation in the diurnal
pattern, improving generality and the ability to transfer
among sites. Normalizing time requires the time of sun-
rise and sunset, which can be obtained using tables or
algorithms. Implementation of the TFIT model is not
appreciably more difficult than using the simplest
method, SAWTOOTH, and is much easier than the
other methods.

Table 5. Values of RMSE and r?, for local calibrations described
in the text, and for the SC85 (South Carolina 1985) calibra-
tion normals.

r: RMSE
Location "Year vs.self vs.SC85 vs.self vs.SC85
Morris, MN 1988 0.81 0.75 212 2.64
Aguila, AZ 1988 0.83 0.86 2.38 2.28
Coolidge, AZ 1988 0.84 0.84 2.39 245
Parker, AZ 1988 0.84 0.84 223 2.24
Safford, AZ 1988 0.87 0.87 231 2.26
Tucson, AZ 1988 0.85 0.85 2.24 2.29
Yuma Valley, AZ 1988  0.82 0.84 234 2.33
AZ mean 0.84 0.85 231 2.31
Boise, ID (Quonset) 1993 0.59 0.65 4.30 4.14
Reynolds Mtn., ID 1993 047 0.55 3.65 3.50
Lincoln, NE- 1992 0.68 0.67 2.10 2.21
Lincoln, NE 1993 0.65 0.64 2.02 213
Lincoln, NE 1994 0.69 0.68 2.12 227
Lincoln, NE 1995 0.66 0.65 2.16 2.28
NE mean 0.67 0.66 2.10 222
Pendleton, OR 1983 0.68 0.74 2.38 2.08
Pendleton, OR 1984 0.68 0.75 2.36 2.02
Pendleton, OR 1985 0.69 0.76 2.53 2.11
Pendleton, OR 1986 0.67 0.76 2.38 1.9
Pendleton, OR 1987 0.69 0.77 2.70 222
Pendleton, OR 1988 0.70 0.78 2.66 2.13
OR mean 0.68 0.76 2.50 2.08
Kutztown, PA 1986 0.74 0.74 1.80 1.84
Kutztown, PA 1988 0.76 0.76 177 1.82
PA mean 0.75 0.75 178 1.83
W. Lafayette, IN 1979 0.80 0.74 1.60 1.94
Grand mean 0.73 0.75 2.39 2.32
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Perhaps the most attractive feature of the TFIT
model, beyond the performance obtained by allowing
the weather site to define its own pattern, is the founda-
tion it provides for the next generation of stochastic air
temperature generators. The parameters of the beta
distribution can be used, for example, in Markov chain
models that preserve autocorrelation of the temperature
series in the presence of anomalous events, which them-
selves can be impressed on the series with historically
accurate frequency.
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